Smart Proxy - Bug #20474

Multiple free IPs returned after record deletion
08/01/2017 09:33 AM - Lukas Zapletal

Status: Closed
Priority: High
Assignee:
Category: DHCP
Target version:
Difficulty: Fixed in Releases:
Triaged: Found in Releases:
Bugzilla link: 1459644 Red Hat JIRA:
Pull request: https://github.com/theforeman/smart-pro
xy/pull/543

Description
In #20173 we fixed possible race condition, but there is one more:

create reservation

call unused_ip and X is returned
delete the above reservation
call unused_ip and Y is returned

Now, the contract is expected to satisfy X !=Y but it's not the case right now thanks to the design of our unused_ip method (rotating
list shifts to the left on delete returning already returned IP). | think we need to rethink how this is done.

We should also not use /tmp as the directory, it's getting deleted via systemd timer in RHEL7 or other distros as well.

Related issues:
Related to Foreman - Bug #20475: Implement Random DB IPAM Closed 08/01/2017
Related to Smart Proxy - Bug #20173: Concurrent calls to Subnet#unused_ip may... Closed 06/30/2017

Associated revisions

Revision 54f44d80 - 11/03/2017 08:18 AM - Dmitri Dolguikh

Fixes #20474 - return different ips on sequential unused_ip calls

History

#1 - 08/01/2017 09:34 AM - Lukas Zapletal

- Description updated

#2 - 08/01/2017 09:49 AM - Lukas Zapletal
- Related to Bug #20475: Implement Random DB IPAM added

#3 - 08/01/2017 09:49 AM - Lukas Zapletal

- Related to Bug #20173: Concurrent calls to Subnet#unused_ip may return the same ip address added

#4 - 08/08/2017 10:21 AM - Lukas Zapletal
- Bugzilla link set to 1459644

Randomizing will look like the best solution. We can seed random generator from MAC address as we did in #20475.

#5 - 09/01/2017 05:42 AM - Lukas Zapletal

Foreman core now contains randomized IPAM DB implementation, we need similar for Smart Proxy. Ideally this would be an implementation that Ivan
this is customer-facing, can you put this on your scrum?

module IPAM
Internal DB IPAM returning all IPs in random order to minimize race conditions

05/18/2024 1/3

https://projects.theforeman.org/issues/20173
https://projects.theforeman.org/issues/20475

class RandomDb < Base
def generator
@generator ||= Random.new(mac ? mac.gsub(':', '').to_i(16) : Random.new_seed)
end

def random_ip
IPAddr.new (generator.rand (subnet_range.first.to_i..subnet_range.last.to_i), subnet.family)
end

Safety check not to spend much CPU time when there are no many free IPs left. This gives up
in about a second on Ryzen 1700 running with Ruby 2.4.

MAX_ITERATIONS = 100_000

def suggest_ip

iterations = 0

loop do
next random IP from the sequence generated by MAC seed
candidate = random_ip

iterations += 1
break if iterations >= MAX_ITERATIONS
try to match it
ip = candidate.to_s
if !excluded_ips.include? (ip) && !subnet.known_ips.include? (ip)
logger.debug ("Found #{ip} in #{iterations} iterations")
return ip
end
end
logger.debug ("Not suggesting IP Address for #{subnet} as no free IP found in reasonable time (#{iteratio
ns} iterations)")
errors.add(:subnet, _('no random free IP could be found in our DB, enlarge subnet range'))
nil
end
end
end

The following unit tests simulates the race condition:

def test_unused_ip_with_concurrent_record_add
@subnet.stubs (:icmp_pingable?)
@subnet.stubs (:tcp_pingable?)
records = []
records << Proxy::DHCP::Reservation.new('test', "192.168.0.1", "aa:bb:cc:dd:ee:01", @subnet, :hostname =>'
test_01"'")
assert_equal "192.168.0.2", @subnet.unused_ip (records)
assert_equal "192.168.0.3", @subnet.unused_ip (records)
records << Proxy::DHCP::Reservation.new('test', "192.168.0.2", "aa:bb:cc:dd:ee:02", @subnet, :hostname =>'
test_02"')
assert_equal "192.168.0.4", @subnet.unused_ip(records) # this fails - returns 192.168.0.5
ensure
File.delete('test/tmp/foreman-proxy_192.168.0.0_24.tmp")
end

def test_unused_ip_with_concurrent_record_delete
@subnet.stubs (:icmp_pingable?)
@subnet.stubs (:tcp_pingable?)
records = []
records << Proxy::DHCP::Reservation.new('test', "192.168.0.1", "aa:bb:cc:dd:ee:01", @subnet, :hostname =>'
test_01"'")
records << Proxy::DHCP::Reservation.new('test', "192.168.0.2", "aa:bb:cc:dd:ee:02", @subnet, :hostname =>'
test_02")
assert_equal "192.168.0.3", @subnet.unused_ip (records)
records.pop
assert_equal "192.168.0.4", @subnet.unused_ip (records) # this fails - returns 192.168.0.3
ensure
File.delete('test/tmp/foreman-proxy_192.168.0.0_24.tmp")
end

And the following unit test never returns (CPU spikes at 100%) because Ruby is busy with creating 16 million records array in memory. The
randomized can solve that:

def test_unused_aclass_ip_beware_this_never_finishes
@network = "10.0.0.0"
@netmask = "255.0.0.0"
@subnet = Proxy::DHCP::Subnet.new @network, @netmask
@subnet.stubs (:icmp_pingable?)
@subnet.stubs (:tcp_pingable?)

05/18/2024 2/3

r = Proxy::DHCP::Reservation.new('test', "10.0.0.1", "aa:bb:cc:dd:ee:ff", @subnet, :hostname =>'testl')
assert_equal "10.0.0.2", @subnet.unused_ip([r])

ensure
File.delete('test/tmp/foreman-proxy_10.0.0.0_8.tmp")

end

Ideally the code is refactored so unused_ip has it's own providers injected into subnet/server and we provide two implementations: the current one
(perhaps fixed so it uses less memory) and random which | believe is very easy to implement (see the code bit from core) and workarounds the issue
nicely.

#6 - 09/01/2017 05:42 AM - Lukas Zapletal
- Priority changed from Normal to High

BZ set, customer facing.

#7 - 09/07/2017 05:58 PM - Anonymous
- Status changed from New to Assigned

- Assignee set to Anonymous

#8 - 09/13/2017 04:38 PM - The Foreman Bot
- Status changed from Assigned to Ready For Testing
- Pull request https://github.com/theforeman/smart-proxy/pull/543 added

#9 - 11/03/2017 09:01 AM - Anonymous
- Status changed from Ready For Testing to Closed
- % Done changed from 0 to 100

Applied in changeset 54f44d807b8540f 1a0d1 f.

05/18/2024 3/3

https://projects.theforeman.org/projects/smart-proxy/repository/7/revisions/54f44d807b8540fd3561a0d16ab68c68deb88c0f
http://www.tcpdf.org

