
MAINTAINING OVER 40MAINTAINING OVER 40
ANSIBLE MODULES: ANSIBLE MODULES: 33 4 4

YEARS LATERYEARS LATER

1 / 38

$ WHOAMI$ WHOAMI

Evgeni Golov

Senior Software Engineer at Red Hat

ex-Consultant at Red Hat

Debian Developer

♥ FOSS ♥

♥ automation ♥

2 / 38

FOREMAN + ANSIBLE = FOREMAN + ANSIBLE = ♥♥
Foreman has an API
Everyone loves writing YAML instead of
clicking in a GUI
So we wrote modules, rewrote them again,
refactored them and stu�ed them into a
collection
This is the story of our journey

3 / 38

PRELUDE:PRELUDE:
MOTIVATION / WTFMOTIVATION / WTF

4 / 38

WHAT'S FOREMAN?WHAT'S FOREMAN?
lifecycle management tool for physical and
virtual servers
power management, provisioning,
con�guration
Bare-Metal, VMware, RHV, OpenStack, GCE,
Azure, etc
huge plugin ecosystem (Katello, Monitoring,
Ansible, …)

5 / 38

WHAT'S ANSIBLE?WHAT'S ANSIBLE?
"radically simple IT automation engine"
huge number of modules for various
usecases
writing own modules is very easy
integrates well with REST APIs

6 / 38

WHY AUTOMATINGWHY AUTOMATING
FOREMAN WITH ANSIBLE?FOREMAN WITH ANSIBLE?

We have daily tasks in our environment
WebUI and hammer don't scale well
Using Ansible as a declarative API client

7 / 38

CHAPTER 1:CHAPTER 1:
ANSIBLE/ANSIBLEANSIBLE/ANSIBLE

8 / 38

FOREMANFOREMAN AND AND KATELLOKATELLO

MODULES INMODULES IN
ANSIBLE/ANSIBLEANSIBLE/ANSIBLE

Ansible upstream since 2.3 (2016)
one module to rule them all, thus
cumbersome to use
uses the (Satellite speci�c) nailgun library
mostly Katello oriented

9 / 38

FOREMANFOREMAN AND AND KATELLOKATELLO

MODULES INMODULES IN
ANSIBLE/ANSIBLEANSIBLE/ANSIBLE

Turns out one maintainer for code in
ansible/ansible is not enough
Didn't have tests until 2018
Deprecated since 2.8
To be removed in 2.12

10 / 38

CHAPTER 2: A NEWCHAPTER 2: A NEW
REPOSITORYREPOSITORY

11 / 38

FOREMAN-ANSIBLE-FOREMAN-ANSIBLE-

MODULES.GITMODULES.GIT

Started in June 2017
A new repository under @theforeman
organization
Goal: central place for collaboration around
Ansible modules for Foreman
First step: split foreman and katello into
"one module per entity"

started with 6 modules
Centralized module_utils: July 2017

12 / 38

CHAPTER 3: TESTSCHAPTER 3: TESTS

13 / 38

CHAPTER 3.1: TESTCHAPTER 3.1: TEST
PLAYBOOKSPLAYBOOKS

First set of tests added in November 2017
Playbooks that would use the modules
against a live server
Good start, but expensive test execution
Doesn't play well with Travis CI and friends

14 / 38

CHAPTER 3.2: VCR BASEDCHAPTER 3.2: VCR BASED
TESTSTESTS

VCR (vcrpy) is a great way to record and
replay HTTP requests/responses
Allows recording "good" API interactions and
replay them on Travis
Added January 2018
Ensured modules work on Python 2.7 + 3.5
First PlaybookCLI, now ansible-runner
Full coverage: August 2019

15 / 38

CHAPTER 3.3: CHECK MODECHAPTER 3.3: CHECK MODE
TESTSTESTS

All our modules support check mode
We re-run the VCR based tests with --check

16 / 38

CHAPTER 3.4: SANITY TESTSCHAPTER 3.4: SANITY TESTS
Ansible provides ansible-test for in-tree
modules
Since Ansible 2.9 it can also handle
Collections
We run ansible-test sanity --venv
plugins/ across all supported Pythons

17 / 38

CHAPTER 3.6: EXPECTEDCHAPTER 3.6: EXPECTED
CHANGE TESTSCHANGE TESTS

Our test playbooks execute every task twice
The �rst execution is expected to have
changed=True

The second changed=False
This ensures the modules are idempotent

18 / 38

CHAPTER 3.7: DIFF MODECHAPTER 3.7: DIFF MODE
TESTSTESTS

Our modules return before/after diff data
to Ansible
We access that data in our test playbooks
and analyze the content

19 / 38

CHAPTER 4:CHAPTER 4:
DOCUMENTATIONDOCUMENTATION

20 / 38

CHAPTER 4.1: BUILDINGCHAPTER 4.1: BUILDING
DOCUMENTATIONDOCUMENTATION

All modules have DOCUMENTATION
populated
We use build-ansible.py document-
plugins with a customized template
Ansible internal, our use of it breaks
sometimes

Would be great to have o�cial tooling
Automatic builds on Galaxy?

Need to �gure out how to autopublish docs

21 / 38

CHAPTER 4.2:CHAPTER 4.2:
DOCUMENTATIONDOCUMENTATION

FRAGMENTSFRAGMENTS
Ansible 2.8 introduced documentation
fragments
We use them heavily to document common
parameters (credentials etc)
Fragments for return values would be cool

22 / 38

CHAPTER 5:CHAPTER 5:
FOREMANANSIBLEMOFOREMANANSIBLEMO

DULEDULE

23 / 38

CHAPTER 5.1:CHAPTER 5.1:
FOREMANANSIBLEMODULEFOREMANANSIBLEMODULE

ForemanAnsibleModule is a sub-class of
AnsibleModule

Simpli�ed de�nition of common parameters
in argument_spec
Import error handling
Entity create/update/delete/compare
helpers
before/after diff handling

24 / 38

CHAPTER 5.2:CHAPTER 5.2:
FOREMANENTITY…,FOREMANENTITY…,

KATELLOANSIBLEMODULE,KATELLOANSIBLEMODULE,
……

Further sub-classing useful
ForemanEntityAnsibleModule adds a state
parameter
KatelloAnsibleModule makes makes
organization required

25 / 38

CHAPTER 6: LIBRARIESCHAPTER 6: LIBRARIES

26 / 38

CHAPTER 6.1: NAILGUNCHAPTER 6.1: NAILGUN
We started with the nailgun library
Originally developed by Satellite QE
Targeted at Satellite environments

no support for non-Satellite plugins
released at the same cadence as
Satellite

Designed to test the Satellite API

27 / 38

CHAPTER 6.2: APYPIECHAPTER 6.2: APYPIE
nailgun was �ne when we targeted Satellite
environments
Katello (and Foreman) were moving quicker
Decided to write an own API library

using the published apidoc.json, thus
mostly version agnostic

Switching libraries was rather easy due to
the abstraction we've built

And tests, tests will save you!

28 / 38

CHAPTER 7: USE THECHAPTER 7: USE THE
FORCEFORCE

29 / 38

CHAPTER 7.1: USE THE FORCECHAPTER 7.1: USE THE FORCE
OF THE ARGUMENT_SPECOF THE ARGUMENT_SPEC
Ansible supports complex (nested)
argument_specs

elements='dict',

options=dict(…)

Allows better checking of complex
parameters

30 / 38

CHAPTER 7.2: USE THE FORCECHAPTER 7.2: USE THE FORCE
OF THE ENTITY_SPECOF THE ENTITY_SPEC

We always had a need to map from Ansible
param names to Foreman API parameters
This resulted in the introduction of the
entity_spec

argument_spec extended with
Foreman speci�c data
The plain argument_spec can be
generated from it

31 / 38

CHAPTER 7.3: USE THE FORCECHAPTER 7.3: USE THE FORCE
OF THE ENTITY_SPEC PT. 2OF THE ENTITY_SPEC PT. 2

Many modules perform simple CRUD
operations:

take user input
�nd matching entity
create/update/delete based on input
report

We used to have write code for that, now this
is generated from the entity_spec

32 / 38

CHAPTER 8:CHAPTER 8:
COMMUNITYCOMMUNITY

33 / 38

CHAPTER 8: COMMUNITYCHAPTER 8: COMMUNITY
Originally started as "my team needs this"
Quickly gained contributions from ATIX
Today: 35 contributors, many from Red Hat
and ATIX
Developers, Consultants, Ops, Customers
Adding their usecases and features

34 / 38

CHAPTER 8: COMMUNITYCHAPTER 8: COMMUNITY
Initial contribution was hard, duplicated
code, hard to test
Increased contribution when we moved to a
more centralized codebase
Having a collection and RPMs made
consumption easier
Recording VCR test results is still the biggest
blocker

35 / 38

CHAPTER 9: OUTLOOKCHAPTER 9: OUTLOOK

36 / 38

CHAPTER 9: OUTLOOKCHAPTER 9: OUTLOOK
foreman_host supporting ALL the
parameters
o�cial roles to support central work�ows
more modules
documentation autopublishing and
versioning
easier contribution
collection defaults like

?
module defaults

groups

37 / 38

https://docs.ansible.com/ansible/devel/user_guide/playbooks_module_defaults.html#module-defaults-groups

THANKS!THANKS!

evgeni@golov.de

die-welt.net

@zhenech

@zhenech@chaos.social

@evgeni

38 / 38

mailto:evgeni@golov.de
https://www.die-welt.net/
https://twitter.com/zhenech
https://chaos.social/@zhenech
https://github.com/evgeni

